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IMPORTANCE Emerging evidence indicates that exposure to fine particulate matter (PM2.5)
air pollution may increase dementia risk in older adults. Although this evidence suggests
opportunities for intervention, little is known about the relative importance of PM2.5 from
different emission sources.

OBJECTIVE To examine associations of long-term exposure of total and source-specific PM2.5

with incident dementia in older adults.

DESIGN, SETTING, AND PARTICIPANTS The Environmental Predictors of Cognitive Health
and Aging study used biennial survey data from January 1, 1998, to December 31, 2016,
for participants in the Health and Retirement Study, which is a nationally representative,
population-based cohort study in the US. The present cohort study included all participants
older than 50 years who were without dementia at baseline and had available exposure,
outcome, and demographic data between 1998 and 2016 (N = 27 857). Analyses were
performed from January 31 to May 1, 2022.

EXPOSURES The 10-year mean total PM2.5 and PM2.5 from 9 emission sources at participant
residences for each month during follow-up using spatiotemporal and chemical transport
models.

MAIN OUTCOMES AND MEASURES The main outcome was incident dementia as classified
by a validated algorithm incorporating respondent-based cognitive testing and proxy
respondent reports. Adjusted hazard ratios (HRs) were estimated for incident dementia
per IQR of residential PM2.5 concentrations using time-varying, weighted Cox proportional
hazards regression models with adjustment for the individual- and area-level risk factors.

RESULTS Among 27 857 participants (mean [SD] age, 61 [10] years; 15 747 [56.5%] female),
4105 (15%) developed dementia during a mean (SD) follow-up of 10.2 [5.6] years. Higher
concentrations of total PM2.5 were associated with greater rates of incident dementia (HR,
1.08 per IQR; 95% CI, 1.01-1.17). In single pollutant models, PM2.5 from all sources, except
dust, were associated with increased rates of dementia, with the strongest associations
for agriculture, traffic, coal combustion, and wildfires. After control for PM2.5 from all other
sources and copollutants, only PM2.5 from agriculture (HR, 1.13; 95% CI, 1.01-1.27) and
wildfires (HR, 1.05; 95% CI, 1.02-1.08) were robustly associated with greater rates of
dementia.

CONCLUSION AND RELEVANCE In this cohort study, higher residential PM2.5 levels, especially
from agriculture and wildfires, were associated with higher rates of incident dementia,
providing further evidence supporting PM2.5 reduction as a population-based approach
to promote healthy cognitive aging. These findings also indicate that intervening on key
emission sources might have value, although more research is needed to confirm these
findings.
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F ine particulate matter (PM2.5) air pollution has recently
been recognized as a risk factor for dementia.1,2 Fine par-
ticulate matter may affect cognitive function via neuro-

inflammation as a result of systemic inflammation or oxidative
stress following lung irritation.3,4 It has also been proposed that
the smallest particles, often coated with neurotoxic chemicals,5,6

can enter the brain through the olfactory bulb or cross the blood-
brain barrier.7,8 Unlike many other common risk factors for de-
mentia (eg, hypertension, stroke, and diabetes), exposures to
air pollution can be modified at the population level, making
it a prime target for large-scale prevention efforts.

Notably, PM2.5 originates from many sources in the environ-
ment, includingtraffic,coal-firedpowerplants,agriculturalemis-
sions, and wildfires. Each source can emit PM2.5 with distinct
physical and chemical characteristics. For example, components
suchasblackcarbonandnitratesaremorecommoninPM2.5 from
traffic-related sources, whereas ammonium is often in PM2.5

from agriculture.9 Although variations in emission sources are
hypothesized to contribute to observed differences in associa-
tions across studies of PM2.5 and cognitive health,10 PM2.5 is typi-
callyquantifiedbythetotalmass.Asaresult, it remainsunknown
whether PM2.5 from all emission sources affects the brain simi-
larly despite clear relevance for designing strategies to reduce
PM2.5 pollution. In this study, we aimed to address this knowl-
edge gap by estimating associations between incident demen-
tia and long-term PM2.5 expressed as total mass and PM2.5 from
9 unique emission sources in a large cohort study in the US.

Methods
Study Population
The Environmental Predictors of Cognitive Health and Aging
(EPOCH) cohort study used data from the Health and Retire-
ment Study (HRS), a nationally representative cohort of older
adults in the US. Since 1992, participants have been inter-
viewed biennially about their cognition, overall health, and
health behaviors until death or loss to follow-up.11 The HRS has
replenished its sample every 6 years to account for the aging
of the original cohort.12 All participants older than 50 years with
at least 2 interviews between January 1, 1998, and December
31, 2016, were eligible for our study if they were free of de-
mentia at their first interview during this period. For partici-
pants who were unable or unwilling to be interviewed, a proxy
respondent (most often a spouse or child) completed the sur-
vey questions. These proxy interviews were intended to mini-
mize informative loss during the follow-up period. As illus-
trated in eFigure 1 in Supplement 1, we excluded participants
with missing exposure, outcome, or key covariates. The cur-
rent study (EPOCH) and HRS were both approved by the
University of Michigan Institutional Review Board. Written in-
formed consent was obtained from all study participants. This
study followed the Strengthening the Reporting of Observa-
tional Studies in Epidemiology (STROBE) reporting guideline.

Exposure Assessment
We used a spatiotemporal prediction model to estimate total
PM2.5 at participants’ residential addresses.13 Briefly, this model

leverages (1) measurements from the Environmental Protec-
tion Agency regulatory networks and several research stud-
ies; (2) more than 300 geographic covariates characterizing
nearby transportation, land cover and use, population den-
sity, emission sources, and vegetation; and (3) spatial corre-
lations to predict concentrations for each 2-week period at any
location in the US between 1999 and 2016.14 Because moni-
toring data for PM2.5 before 2000 is limited, we used a simpli-
fied annual mean spatiotemporal model between 1990 and
1999.13,15 To account for potential confounding by other pol-
lutants, we also estimated coarse particulate matter (PM10-

2.5), nitrogen dioxide, and ozone concentrations using similar
spatiotemporal models.16,17

We derived source-specific PM2.5 concentrations by mul-
tiplying the total PM2.5 concentration at each address by local
fractions of PM2.5 attributable to each of 9 emission sources
(ie, agriculture, road traffic, nonroad traffic, coal combustion
for energy production, other energy production, coal combus-
tion for industry, other industry, wildfires, and windblown
dust). We provided detailed descriptions for each source in
eAppendix 2 in Supplement 1. These fractions were gener-
ated at a resolution of 0.5° × 0.625° by serially running an at-
mospheric chemistry-transport model (GEOS-Chem) with all
sources but 1 to isolate the unique contribution of that source
to the total PM2.5 mixture (eAppendix 1 in Supplement 1).18 We
evaluated all other sources as part of total PM2.5 owing to lower
confidence levels in the quality of underlying emission data.
Although these data were generated using data from 2017, we
assume that these estimates are reliable estimates of source
contributions during the past decade, because primary PM2.5

emissions as reported in the National Emissions Inventory in
2017 were strongly correlated with 10-year mean emissions
from 2007 to 2017 for most sources (R2 = 0.76) (eFigure 2 in
Supplement 1) and the rank order was largely stable over time
(eFigure 3 in Supplement 1).19 We assigned concentrations
of all pollutants during the 10-year period before each fol-
low-up assessment using participants’ residential histories.

Dementia Classification
The HRS has conducted cognitive assessments biennially since
1998. For self-respondents, assessments included immediate

Key Points
Question Are long-term exposures to particulate air pollution
from different emission sources associated with incident
dementia?

Findings In this nationally representative cohort study in the US,
higher residential levels of fine particulate matter were associated
with greater rates of incident dementia, especially for fine
particulate matter generated by agriculture and wildfires.

Meaning These findings support the hypothesis that airborne
particulate matter pollution is associated with the likelihood of
developing dementia and suggest that selective interventions
to reduce pollution exposure may decrease the life-long risk of
dementia; however, more research is needed to confirm these
relationships.
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and delayed word recall, serial sevens subtraction, and count-
ing backward tests. For proxy respondents, the cognitive as-
sessment included questions about the participant’s memory
and instrumental activities of daily living limitations, as well
as an interviewer assessment of the participant’s cognitive
impairment.20

We defined dementia using the Langa-Weir algorithm,20

which has calibrated the HRS responses to assessments of clini-
cally diagnosed dementia in a substudy.21 The algorithm clas-
sifies respondents as having dementia if their cognitive test
scores are 6 or less of 27 points or proxy-respondent scores are
6 to 11 of 11 points.20

Covariates
Detailed information about personal characteristics was col-
lected during all study interviews. We also used the residen-
tial location to estimate urbanicity based on the Beale Rural-
Urban Continuum22 and neighborhood socioeconomic status
(NSES). The NSES was defined using 11 US Census variables,
with higher levels indicating locations with lower SES.23

Statistical Analysis
We used a time-dependent Cox proportional hazards regres-
sion model to estimate associations of total and source-
specific PM2.5 with incident dementia. Confounding by time
was an important consideration, because (1) air pollution con-
centrations follow secular trends (eFigure 4 in Supplement 1),24

(2) age is a strong determinant of dementia risk, (3) the HRS
recruited from a wide range of birth cohorts, and (4) there are
observed trends in dementia that may be due to causes other
than air pollution.25 Therefore, we used calendar dates as our
time axis and further stratified our models by 2-year birth co-
horts and age at recruitment. Given the stratified, multistage
sample design, we applied the HRS person-level sampling
weights and accounted for geographic stratification and
clustering.26 Finally, we verified the proportional hazards as-
sumption for all variables in the Cox models using scaled
Schoenfeld residuals.

In our primary models, we adjusted for potential con-
founders beyond age and time by including terms for sex, race
and ethnicity (non-Hispanic Black, Hispanic, non-Hispanic
White, and people of other races [ie, American Indian, Alaska
Native, Asian, and Pacific Islander] for whom the sample size
was insufficient to analyze individually), educational attain-
ment (less than high school, general equivalency diploma, high
school graduate, some college, and college and above), own-
ership of the primary residence, and total household wealth,
which was adjusted by fitting natural spline with 5 df. We also
adjusted for urbanicity and NSES based on participants’ resi-
dential histories. We similarly incorporated a flexible set of un-
penalized thin-plate regression splines with 10 df to adjust for
additional potential differences in place.27,28 We did not ad-
just for health status indicators (eg, hypertension and stroke)
because these may be causal intermediates.

Our analysis first focused on single-pollutant models (model
1). Then we modeled associations of PM2.5 from each source ad-
justed for the sum of PM2.5 from all other sources (model 2) and
other copollutants (model 3). We reported hazard ratios (HRs)

per interquartile range (IQR) to reflect differences across the ob-
served ranges in concentrations and 1 μg/m3 to reflect toxicity
for a unit change. We further examined whether associations
with PM2.5 varied by sex, race or ethnicity, and baseline age
(<75 vs ≥75 years) using interaction terms and then fitted
penalized spline for each PM2.5 in our single-pollutant models
to account for the possible nonlinear association between PM2.5

and incident dementia. With our observed HRs in model 1, we
then estimated the burden of incident dementia attributable to
total PM2.5 for the US population in 2015 following a global
burden of disease comparative risk assessment framework
(eAppendix 3 in Supplement 1).29 Additionally, we evaluated
the association of incident dementia with other pollutants and
the sum of PM2.5 from sources that have not been included as
source-specific ones.

In sensitivity analyses, we examined associations using
different mean exposure periods (1 year and 5 years), using de-
mentia identified by other algorithms as outcome30 and re-
stricting our analyses to the nonmovers during the follow-
up. Given that our assumption of temporal stability of source
contribution is particularly strong for wildfires,31 we addition-
ally evaluated satellite-based estimates for wildfire-derived
PM2.5 from 2006 to 2016. Then we further tested our adjust-
ment for SES by excluding or including the SES indicators in
the models, including a binary indicator of agriculture-
related occupation as a surrogate for exposure to neurotoxic
pesticides.32 Last, to examine the impact of potential selec-
tive attrition, we computed inverse probability-of-attrition
weights for each observation and accounted for these weights
in our models.33 Data analysis was performed from January 31
to May 1, 2022.

Results
A total of 27 857 individuals (mean [SD] age, 61 [10] years; 15 747
[56.5%] female and 12 110 [43.5%] male; 3164 [11.4%] His-
panic, 4654 [16.7%] non-Hispanic Black, 19 249 [69.1%] non-
Hispanic White, and 790 [2.8%] people of other races, includ-
ing Asian, American Indian, Alaska Native, and Pacific Islander)
participated in the study (Table). We identified 4105 incident
dementia cases during the mean (SD) follow-up of 10.2 (5.6)
years. Compared with those who did not develop dementia,
participants with incident dementia were more likely to have a
race other than White, have less formal education, have less
wealth, and have higher ambient PM2.5 levels at their address.

The median (IQR) 10-year total PM2.5 concentration dur-
ing the follow-up was 11.2 (9.5-13.2) μg/m3. PM2.5 from agri-
culture, traffic, energy production, and other industry sec-
tors varied by region, with generally higher concentrations in
the Midwest and lower concentrations in the West (Figure 1).
Fine particulate matter from wildfires and windblown dust was
mainly concentrated in the West and Southwest, respec-
tively. Relatively high correlations were observed among PM2.5

from agriculture, road traffic, and nonroad traffic as well as
among industry-related coal combustion and other indus-
trial sources (Pearson r > 0.8) (eTable 1 in Supplement 1). Con-
centrations of PM2.5 were higher for those who were older, were
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non-Hispanic Black, had less formal education, and had less
wealth except for PM2.5 from wildfires and windblown dust
(eTable 2 in Supplement 1).

Associations of PM2.5 With Dementia
In single-pollutant models, we observed an 8% (HR, 1.08 per
IQR; 95% CI, 1.01-1.17) increase in the hazard rates of incident

dementia per IQR of total PM2.5 averaged during the previous
10 years (Figure 2). Dementia HRs for IQRs of PM2.5 from the
9 sources ranged from 1.00 (95% CI, 0.99-1.01) for wind-
blown dust to 1.17 (95% CI, 1.05-1.30) for agriculture (Figure 2).
The largest HRs per IQR (≥1.1) were for PM2.5 from agricul-
ture, road traffic, and nonroad traffic, whereas HRs were mod-
est (HRs of approximately 1.05) for PM2.5 from wildfires and

Table. Characteristics of the Study Population, Overall and by Incident Dementia Status During Follow-Up
From 1998 to 2016a

Characteristic
All
(N = 27 857)

Dementia free
during follow-up
(n = 23 752)

Incident dementia
during follow-up
(n = 4105)

Follow-up time, mean (SD), y 10.2 (5.6) 10.5 (5.6) 8.3 (5.1)

Age at baseline, mean (SD), y 61 (10) 60 (9) 68 (10)

Sex

Female 15 747 (56.5) 13 236 (55.7) 2511 (61.2)

Male 12 110 (43.5) 10 516 (44.3) 1594 (38.8)

Race and ethnicity

Hispanic 3164 (11.4) 2589 (10.9) 575 (14.0)

Non-Hispanic Black 4654 (16.7) 3756 (15.8) 898 (21.9)

Non-Hispanic White 19 249 (69.1) 16 710 (70.4) 2539 (61.9)

Otherb 790 (2.8) 697 (2.9) 93 (2.3)

Educational attainment

Less than high school 5825 (20.9) 4045 (17.0) 1780 (43.4)

GED 1369 (4.9) 1175 (4.9) 194 (4.7)

High school 8278 (29.7) 7144 (30.1) 1134 (27.6)

Some college 6561 (23.6) 5972 (25.1) 589 (14.3)

College and above 5824 (20.9) 5416 (22.8) 408 (9.9)

Own primary residence 21 572 (77.4) 18 649 (78.5) 2923 (71.2)

Baseline total wealth without
primary residence, mean (SD), $

242 012 (1 010 704) 256 381 (1 074 788) 158 873 (490 124)

NSES, mean (SD)c 0.23 (0.92) 0.20 (0.93) 0.40 (0.88)

Urbanicity

Urban 14 475 (52.0) 12 503 (52.6) 1972 (48.0)

Suburban 6028 (21.6) 5108 (21.5) 920 (22.4)

Exurban 6201 (22.3) 5218 (22.0) 983 (23.9)

Region

Northeast 4631 (16.6) 3942 (16.6) 689 (16.8)

Midwest 6493 (23.3) 5595 (23.6) 898 (21.9)

South 11 203 (40.2) 9398 (39.6) 1805 (44.0)

West 5530 (19.9) 4817 (20.3) 713 (17.4)

10-Year air pollutants during
follow-up, median (IQR)

Total PM2.5, μg/m3 11.2 (9.5-13.2) 11.1 (9.4-13.1) 12.2 (10.4-14.3)

Agriculture 1.1 (0.6-1.7) 1.1 (0.6-1.7) 1.2 (0.7-1.8)

Road traffic 1.4 (1.1-1.7) 1.4 (1.1-1.7) 1.6 (1.2-1.8)

Nonroad traffic 0.4 (0.3-0.5) 0.4 (0.2-0.5) 0.4 (0.3-0.6)

Energy generation (coal) 0.8 (0.5-1.1) 0.8 (0.5-1.1) 0.9 (0.6-1.2)

Energy generation (other) 0.6 (0.4-0.7) 0.5 (0.4-0.7) 0.6 (0.5-0.7)

Industry (coal) 0.2 (0.2-0.3) 0.2 (0.2-0.3) 0.2 (0.2-0.3)

Industry (other) 0.9 (0.7-1.2) 0.9 (0.7-1.2) 1.0 (0.8-1.3)

Wildfires 1.0 (0.7-1.3) 1.0 (0.7-1.3) 1.1 (0.8-1.4)

Windblown dust 0.1 (0.0-0.1) 0.1 (0.0-0.1) 0.1 (0.0-0.2)

Coarse PM, μg/m3 8.9 (6.8-11.6) 8.9 (6.8-11.6) 9.0 (6.8-11.6)

Nitrogen dioxide, ppb 9.0 (6.0-13.7) 8.9 (5.9-13.5) 10.2 (6.7-15.6)

Ozone, ppb 27.0 (24.8-28.6) 27.1 (24.9-28.7) 26.6 (24.1-28.3)

Abbreviations NSES, neighborhood
socioeconomic status; PM2.5, fine
particulate matter; ppb, parts per
billion.
a Data are reported as number

(percentage) of study participants
unless otherwise indicated.

b Other includes American Indian,
Alaska Native, Asian, and Pacific
Islander.

c The 11 variables used to derive the
NSES included (1) income-related
variables (ie, median household
income, the percentage of
households living under the poverty
level, the percentage of households
receiving public assistance, and
the percentage of single-parent
families), (2) wealth-related
variables (ie, the percentage of
households that own their home,
the percentage of households
that receive interest, dividend,
or rental income, and the median
value of owner-occupied homes),
(3) education-related variables
(ie, the percentage of persons with
at least a high school degree and the
percentage with at least a bachelor’s
degree), and (4) occupation-related
variables (ie, the percentage
unemployed and the percentage
with a nonmanagerial occupation).
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coal combustion for energy production and industry. We ob-
served weak, imprecise, or no associations for PM2.5 from non-
coal energy production and industry as well as windblown dust.
For a 1-μg/m3 scalar (eTable 3 in Supplement 1), the HRs for
PM2.5 were largest for coal combustion for industry and traf-
fic sources followed by agriculture, energy production, and
wildfires.

In models adjusted for all other PM2.5 and copollutants,
our findings remained qualitatively similar for PM2.5 from
agriculture, road traffic, nonroad traffic, coal combustion for
energy production, and wildfires, although the magnitudes
of the associations were generally weaker or less precise
than single-pollutant models (Figure 2). After adjustment for
other pollutants, only the association with PM2.5 from agri-
culture (HR, 1.13; 95% CI, 1.01-1.27) and fires (HR, 1.05; 95%
CI, 1.02-1.08) remained strong and statistically different
from no association. We did not observe any significant
association of incident dementia with the sum of PM2.5 from
sources that have not been included as source-specific ones.
For pollutants other than PM2.5 (eFigure 5 in Supplement 1),
we found evidence of positive associations of PM10-2.5 and
nitrogen dioxide in single-pollutant models, although these
associations were imprecise and could not be distinguished
from no association.

In our secondary analyses, we estimated that nearly
188 000 new cases per year of dementia were attributable to

total PM2.5 exposure in the US if these associations were causal.
We did not find strong evidence of effect modification of the
observed associations, although associations were generally
stronger among men, non-Hispanic White people, and those
younger than 75 years at our baseline examination (eFigures
6-8 in Supplement 1).

In sensitivity analyses, we observed nearly linear associa-
tions for PM2.5 emitted from agriculture, road traffic, nonroad
traffic, industry coal, and wildfires, except for low or rarely oc-
curring concentrations (eFigure 9 in Supplement 1). We also
found that the associations were relatively robust to the use of
different exposure periods, although slightly larger and/or more
precise for the primary 10-year mean period (eTable 4 in Supple-
ment 1), use of different algorithms to classify dementia, ad-
justment for NSES indicators (eTable 5 in Supplement 1), and
use of the inverse probability-of-attrition weights. In addition,
associations remained robust when we restricted our analyses
to nonmovers (eTable 6 in Supplement 1). Moreover, the asso-
ciations with time-varying PM2.5 from wildfires were similarly
consistent with our main analysis (eTable 7 in Supplement 1).

Discussion
In this nationally representative cohort study in the US, we
found that higher long-term exposure to total PM2.5 was as-

Figure 1. The Spatial Distribution of Source-Specific Fine Particulate Matter (PM2.5) Across the US in 2017
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sociated with a greater risk of incident dementia. The strength
of the observed associations differed across emission sources,
with the strongest and most robust associations for PM2.5 from
agriculture and wildfires. Road traffic, nonroad traffic, and coal
combustion for energy and industry were also associated with
incident dementia, although these results were sensitive to ad-

justment for PM2.5 from other sources. According to our esti-
mation, nearly 188 000 new cases per year of dementia were
attributable to total PM2.5 exposure in the US, suggesting that
reducing PM2.5 through actions such as regulations, techno-
logical advances, or use of personal air purifiers may pro-
mote healthy cognitive aging. Our data further indicate that
intervening on key emission sources might have value, al-
though we cannot conclude causality, and more research is
needed to confirm these findings.

Overall, our findings agree with the accumulated evi-
dence on the association between total PM2.5 and incident
dementia.34-36 When results were scaled to 1 μg/m3, we ob-
served a 2% increased rate of dementia for total PM2.5, which
is consistent with the overall HR of dementia reported by a re-
cently published meta-analysis among 51 studies identified
from 2080 records.37 Our results are also comparable with
2 other studies of national cohorts in the US,34,36 including
1 of more than 12 million US Medicare beneficiaries (aged
≥65 years).36 This finding is particularly notable given that our
individual-level exposure estimates and standardized demen-
tia classifications should have less measurement error than
the zip code–level exposure estimates and administrative
outcomes used in the Medicare beneficiaries study.

This study extends the literature by newly examining as-
sociations of incident dementia with PM2.5 from key emission
sources rather than just total PM2.5 mass. Despite the clear im-
plications for pollution reduction policies, to our knowledge,
only 1 other study has investigated the association of PM2.5 from
individual emission sources with dementia.38 That investiga-
tion focused on PM2.5 from traffic and residential wood burn-
ing in a Swedish cohort. As with our single-pollutant models,
they found that higher PM2.5 concentrations from both sources
were associated with increased hazards of dementia. How-
ever, that study did not test whether the findings were robust
to the adjustment of other PM2.5, whereas we found blunt as-
sociations with traffic-related PM2.5 and nitrogen dioxide, a
marker of traffic. The association for wildfires was stronger in
the Swedish cohort than what we observed. This finding may
not be surprising, however, because personal exposures to resi-
dential wood burning are more proximal than smoke from wild-
fires in the outdoor environment. Interestingly, although the
Medicare cohort study39 did not evaluate PM2.5 from agricul-
ture specifically, it did report evidence for an association of am-
monium with dementia, which could reflect emissions from ag-
riculture. That study also reported a robust association with
dementia for sulfate, an indicator for PM2.5 from fossil fuel com-
bustion. Although our findings did not support this link, a hand-
ful of studies9,40,41 found associations of cardiovascular disease–
related outcomes with coal-generated PM2.5 and PM2.5 metals.
Even though we observed more variability in emissions from
energy production over time compared with most other
sources, we do not suspect that this is the sole cause of our null
association given the high correlation (R2 = 0.76) between 2017
estimates and the 10-year mean.

In this cohort, PM2.5 from agriculture and wildfires was
most strongly and robustly associated with dementia when
scaled to an IQR, which considers both the hazards and range
of concentrations observed across the cohort. Agriculture is

Figure 2. Hazard Ratios (95% CIs) of Incident Dementia in the Health
and Retirement Study (1998-2016) Associated With Interquartile
Differences in 10-Year Mean Concentrations of Source-Specific
Fine Particulate Matter (PM2.5) in Single Pollutant
and Multipollutant Models

Source (IQR)
Total PM2.5 (9.5-13.2)

HR
(95% CI)

Model 1

0.9 1.51.3
HR (95% CI)

1.1

Model 3

Agriculture (0.6-1.7)
Model 1
Model 2
Model 3

Road traffic (1.1-1.7)
Model 1
Model 2
Model 3

Nonroad traffic (0.3-0.5)
Model 1
Model 2
Model 3

Energy coal (0.5-1.1)
Model 1
Model 2
Model 3

Energy other (0.4-0.7)
Model 1
Model 2
Model 3

Industry coal (0.2-0.3)
Model 1
Model 2
Model 3

Industry other (0.7-1.2)
Model 1
Model 2
Model 3

Wildfires (0.7-1.3)
Model 1
Model 2
Model 3

Windblown dust (0.0-0.1)
Model 1
Model 2
Model 3 1.00 (0.99-1.01)

1.00 (1.00-1.01)
1.00 (0.99-1.01)

1.05 (1.02-1.08)
1.05 (1.02-1.08)
1.04 (1.01-1.07)

0.97 (0.93-1.02)
0.97 (0.93-1.00)
1.01 (0.97-1.05)

1.01 (0.94-1.08)
1.00 (0.93-1.07)
1.05 (1.00-1.10)

0.95 (0.86-1.05)
0.96 (0.87-1.06)
1.02 (0.93-1.11)

1.02 (0.93-1.11)
1.03 (0.94-1.12)
1.05 (0.96-1.14)

1.07 (0.91-1.25)
1.07 (0.92-1.26)
1.14 (1.00-1.32)

1.03 (0.91-1.17)
1.06 (0.94-1.19)
1.11 (1.01-1.23)

1.12 (0.98-1.27)
1.13 (1.01-1.27)
1.17 (1.05-1.30)

1.12 (1.02-1.24)
1.08 (1.01-1.17)

The IQRs for each total and source-specific PM2.5 with concentrations are given
in parentheses in micrograms per cubic meter. Model 1 is the single-pollutant
model, stratified by 2-year birth cohorts and 2-year age at baseline and adjusted
for sex, race, educational attainment, ownership of the primary residence,
total household wealth, urbanicity, neighborhood socioeconomic status, and
a flexible set of unpenalized thin-plate regression splines with 10 df. Model 2 is
model 1 plus other PM2.5. Model 3 is model 2 plus coarse PM, nitrogen dioxide,
and ozone.
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a notable source of the PM2.5 precursor, ammonia, which ac-
counts for the formation of 30% of PM2.5 in the US.42 The com-
mon application of neurotoxic pesticides or herbicides in
agriculture43-45 could also plausibly explain observed asso-
ciations between PM2.5 from agriculture and dementia. Simi-
larly, in addition to producing high levels of PM2.5, wildfires
release components that are likely to be highly toxic because
they incinerate natural and synthetic materials in an uncon-
trolled manner. Furthermore, although individual wildfires
may be short-lived, they have become more frequent and de-
structive in the past decades because of warmer tempera-
tures, earlier spring snowmelt, and longer fire seasons.46 Ad-
ditionally, although the precise locational origin of wildfires
may vary, the long-range smoke from wildfires frequently im-
pacts the same downwind locations, resulting in wildfire smoke
becoming a more long-term presence; many US cities now ex-
perience more than 30 days affected by smoke each year.47

Wildfires have been estimated to contribute up to 25% of the
annual mean PM2.5 across the US and up to 50% in some West-
ern regions.48,49 Despite reported adverse associations with
cardiovascular diseases, mental health disorders, and all-
cause mortality,50-54 little is known of the effects of wildfire
smoke on the brain, although 1 study observed associations
between short-term levels of wildfire-related PM2.5 and de-
creased cognitive functioning using game app data.55 Addi-
tionally, because rural participants may breathe more PM2.5

emitted from agriculture and wildfires, our observed associa-
tions with agriculture and wildfires may provide a possible ex-
planation for the persistent rural-urban disparities previ-
ously observed in dementia risk among HRS participants.56

Our finding that the association with PM2.5 from road traf-
fic was sensitive to adjustment for PM2.5 from other sources
was interesting considering that traffic-related air pollution has
been consistently linked to adverse health.57-59 One possible
explanation is that the low spatial resolution of our source data
only captures regional traffic emissions rather than highly lo-
calized gradients.60 If fresh rather than aged traffic particles
are more important, then our models would not capture those
influences. Notably, however, the association with nitrogen di-
oxide predicted with the fine-scale resolution was also blunted
by the adjustment of total PM2.5.

Strengths and Limitations
One important strength of this work is our investigation of PM2.5

from both traditionally recognized and more novel sources, in-
cluding agriculture and wildfires. In addition, instead of using
chemical components as tracers for specific sources,39,61,62

which can often have a lack of specificity, we isolated source-
specific PM2.5 by removing each source individually from a
chemical-transport dispersion model. This approach is ben-
eficial because it accounts for both the primary and second-
ary pollutants that would be generated by that source. Other

strengths of this work include the nationally representative co-
hort that used validated and standardized methods to assess
dementia status during 18 years of follow-up. This approach
captures populations from rural and urban areas and reduces
potential differential misclassification due to detection bias.63

Similarly, the use of proxy respondents and survey weights
minimizes selection bias due to attrition. Finally, we had de-
tailed individual and area-level information on other risk fac-
tors for dementia, including key copollutants, that could con-
found our associations.

Despite these advantages, our study has some limitations.
First, different from our fine estimates of the total PM2.5 from
the spatiotemporal model, the temporal resolution of the PM2.5

source contributions derived from the GEOS-Chem model was
relatively crude, so we had to assume stability across the dura-
tion of our study period. Notably, however, we verified that there
was high temporal stability of source contributions during the
past decade even for less predictable sources (eg, wildfires). Our
findings for wildfires were robust to the use of time-varying
data. Second, the crude spatial resolution of our emissions data
also prevented us from capturing the impacts of highly local-
ized sources (eg, traffic), although our findings for traffic were
consistent with those for nitrogen dioxide, a marker of traffic
that was estimated at the individual level. Third, the relatively
high correlations among different sources raise the possibility
that differential measurement error may interfere with our abil-
ity to confidently disentangle the effects of single sources. As
with all observational studies, we cannot completely rule out
the possibility that our observed associations are attributable
to unmeasured confounding or selection bias. However, our
findings were robust to adjustment of a variety of known NSES
indicators across individual and area levels (eTable 5 in Supple-
ment 1). Our results could also be underestimated by “healthy
survivor” bias because those with comorbidities associated with
both air pollution and dementia may be more likely to be lost
to follow-up. The use of proxies and sampling weights should
minimize this bias, although larger associations found for
younger participants could indicate this healthy selection bias
among the older study participants as has also been seen in
previous studies.36,64

Conclusions
With the rapid aging of the global population and marked in-
creases in the mean life expectancy around the world, the pre-
vention of dementia has become increasingly important. Our
cohort study suggests that reducing PM2.5 and perhaps selec-
tively targeting certain sources for policy interventions might
be effective strategies to reduce the burden of dementia at the
population level, although more research is needed to con-
firm our findings.

ARTICLE INFORMATION

Accepted for Publication: May 29, 2023.

Published Online: August 14, 2023.
doi:10.1001/jamainternmed.2023.3300

Author Affiliations: Department of Epidemiology,
University of Michigan School of Public Health,
Ann Arbor (Zhang, D’Souza, Gao, Kobayashi, Adar);
Department of Epidemiology, Boston University
School of Public Health, Boston, Massachusetts

(Weuve); Institute for Social Research, University of
Michigan, Ann Arbor (Langa, Faul); University of
Michigan Medical School, Ann Arbor (Langa);
Institute for Healthcare Policy and Innovation,
University of Michigan, Ann Arbor (Langa);

Particulate Air Pollution and Incident Dementia in the US Original Investigation Research

jamainternalmedicine.com (Reprinted) JAMA Internal Medicine Published online August 14, 2023 E7

© 2023 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by Jane Rogers on 08/26/2023

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamainternmed.2023.3300?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamainternmed.2023.3300?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamainternmed.2023.3300?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
http://www.jamainternalmedicine.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300


Veterans Affairs Center for Clinical Management
Research, Ann Arbor, Michigan (Langa);
Department of Biostatistics, University of
Washington, Seattle (Szpiro, Sheppard);
Department of Oncology, Georgetown University,
Washington, DC (Mendes de Leon); Department of
Epidemiology, University of Washington, Seattle
(Kaufman); Department of Environmental and
Occupational Health Sciences, University of
Washington, Seattle (Kaufman, Sheppard);
Department of Medicine, University of Washington,
Seattle (Kaufman); Center for Economic and
Social Research, University of Southern California,
Los Angeles (Lee); Department of Health
Management and Policy, University of Michigan
School of Public Health, Ann Arbor (Hirth);
Department of Internal Medicine, University of
Michigan, Ann Arbor (Hirth).

Author Contributions: Drs Zhang and D’Souza had
full access to all of the data in the study and take
responsibility for the integrity of the data and the
accuracy of the data analysis.
Concept and design: Zhang, Weuve, Szpiro, Mendes
de Leon, Lee, Sheppard, Hirth, Adar.
Acquisition, analysis, or interpretation of data:
Zhang, Weuve, Langa, D’Souza, Szpiro, Faul,
Mendes de Leon, Gao, Kaufman, Sheppard,
Kobayashi, Hirth, Adar.
Drafting of the manuscript: Zhang, Hirth.
Critical revision of the manuscript for important
intellectual content: Weuve, Langa, D’Souza, Szpiro,
Faul, Mendes de Leon, Gao, Kaufman, Lee,
Sheppard, Kobayashi, Adar.
Statistical analysis: Zhang, D’Souza, Szpiro, Faul,
Adar.
Obtained funding: Lee, Hirth, Adar.
Administrative, technical, or material support:
D’Souza, Kaufman, Adar.
Supervision: Langa, Kobayashi, Adar.

Conflict of Interest Disclosures: Dr Weuve
reported receiving personal fees from Health
Effects Institute and Alzheimer’s Association
outside the submitted work. Dr Langa reported
receiving grants from the National Institute on
Aging (NIA) during the conduct of the study and
grants from the NIA and Alzheimer’s Association
outside the submitted work. Dr Szpiro reported
receiving grants from the National Institutes of
Health (NIH) during the conduct of the study.
Dr Faul reported grants receiving from the NIA
outside the submitted work. Dr Kaufman
reported receiving grants from the NIH and
US Environmental Protection Agency during the
conduct of the study. Dr Lee reported receiving
grants from the NIH during the conduct of the
study. Dr Sheppard reported receiving grants from
the NIH and Health Effects Institute, both indirectly
related to this work, during the conduct of the
study and personal fees from the US Environmental
Protection Agency as chair of the Clean Air
Scientific Advisory Committee outside the
submitted work. Dr Hirth reported receiving grants
from the NIH during the conduct of the study.
Dr Adar reported receiving grants from the National
Institutes of Environmental Health Sciences and
NIA during the conduct of the study and grants
and personal fees from the Health Effects Institute
outside the submitted work. No other disclosures
were reported.

Funding/Support: The Health and Retirement
Study was funded by grant U01 AG009740 from
the National Institute on Aging and the Social

Security Administration and performed at the
Institute for Social Research, University of
Michigan. This work was supported by grants
R01ES028694 and R01AG030153 from the
National Institutes for Environmental Health
Sciences and Aging.

Role of the Funder/Sponsor: The funders had no
role in the design and conduct of the study;
collection, management, analysis, and
interpretation of the data; preparation, review,
or approval of the manuscript; and decision to
submit the manuscript for publication.

Disclaimer: The authors take sole responsibility
for all data analyses, interpretations, and views
expressed in this work.

Data Sharing Statement: See Supplement 2.

Additional Contributions: Drexel Urban Health
Collaborative provided data and technical support
on the neighborhood socioeconomic status
variable.

REFERENCES

1. Livingston G, Huntley J, Sommerlad A, et al.
Dementia prevention, intervention, and care: 2020
report of the Lancet Commission. Lancet. 2020;
396(10248):413-446. doi:10.1016/S0140-6736(20)
30367-6

2. US Environmental Protection Agency. Integrated
Science Assessment (ISA) for Particulate Matter
(Final Report, December 2019). Accessed June 30,
2023. https://cfpub.epa.gov/ncea/isa/recordisplay.
cfm?deid=347534

3. Clifford A, Lang L, Chen R, Anstey KJ, Seaton A.
Exposure to air pollution and cognitive functioning
across the life course: a systematic literature
review. Environ Res. 2016;147:383-398.
doi:10.1016/j.envres.2016.01.018

4. Simard AR, Rivest S. Neuroprotective properties
of the innate immune system and bone marrow
stem cells in Alzheimer’s disease. Mol Psychiatry.
2006;11(4):327-335. doi:10.1038/sj.mp.4001809

5. Lai W, Li S, Li Y, Tian X. Air pollution and
cognitive functions: evidence from straw burning
in China. Am J Agric Econ. 2022;104(1):190-208.
doi:10.1111/ajae.12225

6. Scieszka D, Hunter R, Begay J, et al.
Neuroinflammatory and neurometabolic
consequences from inhaled wildfire smoke-derived
particulate matter in the western United States.
Toxicol Sci. 2022;186(1):149-162. doi:10.1093/
toxsci/kfab147

7. Lucchini RG, Dorman DC, Elder A, Veronesi B.
Neurological impacts from inhalation of pollutants
and the nose-brain connection. Neurotoxicology.
2012;33(4):838-841. doi:10.1016/j.neuro.2011.12.001

8. González-Maciel A, Reynoso-Robles R,
Torres-Jardón R, Mukherjee PS, Calderón-
Garcidueñas L. Combustion-derived nanoparticles
in key brain target cells and organelles in young
urbanites: culprit hidden in plain sight in
Alzheimer’s disease development. J Alzheimers Dis.
2017;59(1):189-208. doi:10.3233/JAD-170012

9. Kazemiparkouhi F, Honda T, Eum K-D, Wang B,
Manjourides J, Suh HH. The impact of Long-Term
PM2.5 constituents and their sources on specific
causes of death in a US Medicare cohort. Environ Int.
2022;159:106988. doi:10.1016/j.envint.2021.106988

10. Kioumourtzoglou M-A, Austin E, Koutrakis P,
Dominici F, Schwartz J, Zanobetti A. PM2.5 and
survival among older adults: effect modification by
particulate composition. Epidemiology. 2015;26(3):
321-327. doi:10.1097/EDE.0000000000000269

11. Fisher GG, Ryan LH. Overview of the health and
retirement study and introduction to the special
issue. Work Aging Retire. 2018;4(1):1-9. doi:10.1093/
workar/wax032

12. Sonnega A, Faul JD, Ofstedal MB, Langa KM,
Phillips JWR, Weir DR. Cohort profile: the health
and retirement study (HRS). Int J Epidemiol. 2014;
43(2):576-585. doi:10.1093/ije/dyu067

13. Kirwa K, Szpiro AA, Sheppard L, et al. Fine-scale
air pollution models for epidemiologic research:
insights from approaches developed in the
Multi-ethnic Study of Atherosclerosis and Air
Pollution (MESA Air). Curr Environ Health Rep. 2021;
8(2):113-126. doi:10.1007/s40572-021-00310-y

14. Keller JP, Olives C, Kim S-Y, et al. A unified
spatiotemporal modeling approach for predicting
concentrations of multiple air pollutants in the
multi-ethnic study of atherosclerosis and air
pollution. Environ Health Perspect. 2015;123(4):301-
309. doi:10.1289/ehp.1408145

15. Kim S-Y, Olives C, Sheppard L, et al. Historical
prediction modeling approach for estimating
long-term concentrations of PM2.5 in cohort studies
before the 1999 implementation of widespread
monitoring. Environ Health Perspect. 2017;125(1):
38-46. doi:10.1289/EHP131

16. Wang M, Sampson PD, Bechle M, Marshall J,
Vedal S, Kaufman JD. National PM2.5 and NO2
spatiotemporal models integrating intensive
monitoring data and satellite-derived land use
regression in a universal kriging framework in the
United States: 1999-2016. Accessed June 30, 2023.
https://ehp.niehs.nih.gov/doi/abs/10.1289/isesisee.
2018.O02.02.02

17. Wang M, Sampson PD, Hu J, et al. Combining
land-use regression and chemical transport
modeling in a spatiotemporal geostatistical model
for ozone and PM2.5. Environ Sci Technol. 2016;
50(10):5111-5118. doi:10.1021/acs.est.5b06001

18. McDuffie EE, Martin RV, Spadaro JV, et al.
Source sector and fuel contributions to ambient
PM2.5 and attributable mortality across multiple
spatial scales. Nat Commun. 2021;12(1):3594.
doi:10.1038/s41467-021-23853-y

19. US Environmental Protection Agency. Air
Pollutant Emissions Trends Data. Published 2022.
Accessed April 12, 2023. https://www.epa.gov/air-
emissions-inventories/air-pollutant-emissions-
trends-data

20. Langa KM. Langa-Weir Classification of
Cognitive Function (1995 Onward). Survey Research
Center Institute for Social Research, University of
Michigan; 2020.

21. Crimmins EM, Kim JK, Langa KM, Weir DR.
Assessment of cognition using surveys and
neuropsychological assessment: the Health and
Retirement Study and the Aging, Demographics,
and Memory Study. J Gerontol B Psychol Sci Soc Sci.
2011;66(suppl 1):i162-i171. doi:10.1093/geronb/
gbr048

22. USDA Economic Research Service. Rural-Urban
Continuum Codes. Updated December 10, 2020.
Accessed July 14, 2023. https://www.ers.usda.gov/
data-products/rural-urban-continuum-codes

23. Hajat A, Diez-Roux AV, Adar SD, et al.
Air pollution and individual and neighborhood
socioeconomic status: evidence from the
Multi-Ethnic Study of Atherosclerosis (MESA).
Environ Health Perspect. 2013;121(11-12):1325-1333.
doi:10.1289/ehp.1206337

24. Adar SD, Chen Y-H, D’Souza JC, et al.
Longitudinal analysis of long-term air pollution
levels and blood pressure: a cautionary tale from

Research Original Investigation Particulate Air Pollution and Incident Dementia in the US

E8 JAMA Internal Medicine Published online August 14, 2023 (Reprinted) jamainternalmedicine.com

© 2023 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by Jane Rogers on 08/26/2023

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamainternmed.2023.3300?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
https://dx.doi.org/10.1016/S0140-6736(20)30367-6
https://dx.doi.org/10.1016/S0140-6736(20)30367-6
https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534
https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534
https://dx.doi.org/10.1016/j.envres.2016.01.018
https://dx.doi.org/10.1038/sj.mp.4001809
https://dx.doi.org/10.1111/ajae.12225
https://dx.doi.org/10.1093/toxsci/kfab147
https://dx.doi.org/10.1093/toxsci/kfab147
https://dx.doi.org/10.1016/j.neuro.2011.12.001
https://dx.doi.org/10.3233/JAD-170012
https://dx.doi.org/10.1016/j.envint.2021.106988
https://dx.doi.org/10.1097/EDE.0000000000000269
https://dx.doi.org/10.1093/workar/wax032
https://dx.doi.org/10.1093/workar/wax032
https://dx.doi.org/10.1093/ije/dyu067
https://dx.doi.org/10.1007/s40572-021-00310-y
https://dx.doi.org/10.1289/ehp.1408145
https://dx.doi.org/10.1289/EHP131
https://ehp.niehs.nih.gov/doi/abs/10.1289/isesisee.2018.O02.02.02
https://ehp.niehs.nih.gov/doi/abs/10.1289/isesisee.2018.O02.02.02
https://dx.doi.org/10.1021/acs.est.5b06001
https://dx.doi.org/10.1038/s41467-021-23853-y
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data
https://dx.doi.org/10.1093/geronb/gbr048
https://dx.doi.org/10.1093/geronb/gbr048
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes
https://dx.doi.org/10.1289/ehp.1206337
http://www.jamainternalmedicine.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300


the multi-ethnic study of atherosclerosis. Environ
Health Perspect. 2018;126(10):107003. doi:10.1289/
EHP2966

25. Power MC, Bennett EE, Turner RW, et al.
Trends in relative incidence and prevalence of
dementia across non-Hispanic Black and White
individuals in the United States, 2000-2016. JAMA
Neurol. 2021;78(3):275-284. doi:10.1001/
jamaneurol.2020.4471

26. Health and Retirement Study. Sample sizes and
response rates. Survey Research Center, Institute
for Social Research, University of Michigan. April
2017. Accessed June 26, 2023. https://hrs.isr.umich.
edu/publications/biblio/9042

27. Keller JP, Szpiro AA. Selecting a scale for spatial
confounding adjustment. J R Stat Soc Ser A Stat Soc.
2020;183(3):1121-1143. doi:10.1111/rssa.12556

28. Chan SH, Van Hee VC, Bergen S, et al.
Long-term air pollution exposure and blood
pressure in the sister study. Environ Health Perspect.
2015;123(10):951-958. doi:10.1289/ehp.1408125

29. Murray CJL, Aravkin AY, Zheng P, et al;
GBD 2019 Risk Factors Collaborators. Global burden
of 87 risk factors in 204 countries and territories,
1990-2019: a systematic analysis for the Global
Burden of Disease Study 2019. Lancet. 2020;396
(10258):1223-1249. doi:10.1016/S0140-6736(20)
30752-2

30. Gianattasio KZ, Wu Q, Glymour MM,
Power MC. Comparison of methods for algorithmic
classification of dementia status in the Health and
Retirement Study. Epidemiology. 2019;30(2):
291-302. doi:10.1097/EDE.0000000000000945

31. McClure CD, Jaffe DA. US particulate matter air
quality improves except in wildfire-prone areas.
Proc Natl Acad Sci U S A. 2018;115(31):7901-7906.
doi:10.1073/pnas.1804353115

32. Aloizou A-M, Siokas V, Vogiatzi C, et al.
Pesticides, cognitive functions and dementia:
a review. Toxicol Lett. 2020;326:31-51. doi:10.1016/j.
toxlet.2020.03.005

33. Weuve J, Tchetgen Tchetgen EJ, Glymour MM,
et al. Accounting for bias due to selective attrition:
the example of smoking and cognitive decline.
Epidemiology. 2012;23(1):119-128. doi:10.1097/EDE.
0b013e318230e861

34. Ailshire J, Walsemann KM. Education
differences in the adverse impact of PM2.5 on
incident cognitive impairment among US older
adults. J Alzheimer Dis. 2021;79(2):1-11. doi:10.3233/
JAD-200765

35. Shaffer RM, Blanco MN, Li G, et al. Fine
particulate matter and dementia incidence in the
Adult Changes in Thought study. Environ Health
Perspect. 2021;129(8):87001. doi:10.1289/EHP9018

36. Shi L, Steenland K, Li H, et al. A national cohort
study (2000-2018) of long-term air pollution
exposure and incident dementia in older adults in
the United States. Nat Commun. 2021;12(1):6754.
doi:10.1038/s41467-021-27049-2

37. Wilker EH, Osman M, Weisskopf MG. Ambient
air pollution and clinical dementia: systematic
review and meta-analysis. BMJ. 2023;381:e071620.
doi:10.1136/bmj-2022-071620

38. Oudin A, Segersson D, Adolfsson R, Forsberg B.
Association between air pollution from residential
wood burning and dementia incidence in a
longitudinal study in Northern Sweden. PLoS One.

2018;13(6):e0198283. doi:10.1371/journal.pone.
0198283

39. Shi L, Zhu Q, Wang Y, et al. Incident dementia
and long-term exposure to constituents of fine
particle air pollution: a national cohort study in the
United States. Proc Natl Acad Sci U S A. 2023;120(1):
e2211282119. doi:10.1073/pnas.2211282119

40. Thurston GD, Ito K, Lall R, et al. NPACT study 4:
mortality and long-term exposure to PM2.5 and its
components in the American Cancer Society’s
Cancer Prevention Study II cohort. In: National
Particle Component Toxicity (NPACT) Initiative:
Integrated Epidemiologic and Toxicologic Studies
of the Health Effects of Particulate Matter
Components. Health Effects Institute; 2013:127-166.

41. Grande G, Ljungman PLS, Eneroth K,
Bellander T, Rizzuto D. Association between
cardiovascular disease and long-term exposure to
air pollution with the risk of dementia. JAMA Neurol.
2020;77(7):801-809. doi:10.1001/jamaneurol.2019.
4914

42. Wyer KE, Kelleghan DB, Blanes-Vidal V,
Schauberger G, Curran TP. Ammonia emissions
from agriculture and their contribution to fine
particulate matter: a review of implications for
human health. J Environ Manage. 2022;323:116285.
doi:10.1016/j.jenvman.2022.116285

43. Sun H, Chen H, Yao L, et al. Sources and health
risks of PM2.5-bound polychlorinated biphenyls
(PCBs) and organochlorine pesticides (OCPs) in a
North China rural area. J Environ Sci (China). 2020;
95:240-247. doi:10.1016/j.jes.2020.03.051

44. Ji T, Lin T, Wang F, Li Y, Guo Z. Seasonal
variation of organochlorine pesticides in the
gaseous phase and aerosols over the East China
Sea. Atmos Environ. 2015;109:31-41. doi:10.1016/j.
atmosenv.2015.03.004

45. Zhao Y-L, Qu Y, Ou Y-N, Zhang Y-R, Tan L,
Yu J-T. Environmental factors and risks of cognitive
impairment and dementia: a systematic review and
meta-analysis. Ageing Res Rev. 2021;72:101504.
doi:10.1016/j.arr.2021.101504

46. Ford B, Val Martin M, Zelasky SE, et al. Future
fire impacts on smoke concentrations, visibility, and
health in the contiguous United States. Geohealth.
2018;2(8):229-247. doi:10.1029/2018GH000144

47. Saldanha A, Romero FJ, Wells C, Glantz A.
As California Burns, America Breathes Toxic Smoke.
Published 2021. Accessed June 30, 2023. https://
publichealthwatch.org/2021/09/28/as-california-
burns-america-breathes-toxic-smoke/

48. Reid CE, Brauer M, Johnston FH, Jerrett M,
Balmes JR, Elliott CT. Critical review of health
impacts of wildfire smoke exposure. Environ Health
Perspect. 2016;124(9):1334-1343. doi:10.1289/ehp.
1409277

49. Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML.
A systematic review of the physical health impacts
from non-occupational exposure to wildfire smoke.
Environ Res. 2015;136:120-132. doi:10.1016/j.envres.
2014.10.015

50. Heaney A, Stowell JD, Liu JC, Basu R,
Marlier M, Kinney P. Impacts of fine particulate
matter from wildfire smoke on respiratory and
cardiovascular health in California. Geohealth.
2022;6(6):GH000578. doi:10.1029/2021GH000578

51. Wettstein ZS, Hoshiko S, Fahimi J, Harrison RJ,
Cascio WE, Rappold AG. Cardiovascular and
cerebrovascular emergency department visits

associated with wildfire smoke exposure in
California in 2015. J Am Heart Assoc. 2018;7(8):
e007492. doi:10.1161/JAHA.117.007492

52. Chen G, Guo Y, Yue X, et al. Mortality risk
attributable to wildfire-related PM2·5 pollution:
a global time series study in 749 locations. Lancet
Planet Health. 2021;5(9):e579-e587. doi:10.1016/
S2542-5196(21)00200-X

53. Grant E, Runkle JD. Long-term health effects of
wildfire exposure: a scoping review. J Clim Change
Health. 2022;6:100110. doi:10.1016/j.joclim.2021.
100110

54. Ma Y, Zang E, Liu Y, et al. Wildfire smoke PM2.5
and mortality in the contiguous United States.
medRxiv. Preprint posted online February 1, 2023.
doi:10.1101/2023.01.31.23285059

55. Cleland SE, Wyatt LH, Wei L, et al. Short-term
exposure to wildfire smoke and PM2.5 and cognitive
performance in a brain-training game: a longitudinal
study of US adults. Environ Health Perspect. 2022;
130(6):67005. doi:10.1289/EHP10498

56. Weden MM, Shih RA, Kabeto MU, Langa KM.
Secular trends in dementia and cognitive
impairment of US rural and urban older adults.
Am J Prev Med. 2018;54(2):164-172. doi:10.1016/j.
amepre.2017.10.021

57. Salvi A, Salim S. Neurobehavioral consequences
of traffic-related air pollution. Front Neurosci. 2019;
13:1232. doi:10.3389/fnins.2019.01232

58. Costa LG, Cole TB, Coburn J, Chang Y-C, Dao K,
Roqué PJ. Neurotoxicity of traffic-related air
pollution. Neurotoxicology. 2017;59:133-139.
doi:10.1016/j.neuro.2015.11.008

59. Tham R, Schikowski T. The role of
traffic-related air pollution on neurodegenerative
diseases in older people: an epidemiological
perspective. J Alzheimers Dis. 2021;79(3):949-959.
doi:10.3233/JAD-200813

60. Su JG, Jerrett M, Beckerman B, Wilhelm M,
Ghosh JK, Ritz B. Predicting traffic-related air
pollution in Los Angeles using a distance decay
regression selection strategy. Environ Res. 2009;
109(6):657-670. doi:10.1016/j.envres.2009.06.001

61. Wurth R, Kioumourtzoglou M-A, Tucker KL,
Griffith J, Manjourides J, Suh H. Fine particle
sources and cognitive function in an older Puerto
Rican cohort in Greater Boston. Environ Epidemiol.
2018;2(3):e022. doi:10.1097/EE9.
0000000000000022

62. Chang K-H, Chang M-Y, Muo C-H, Wu T-N,
Chen C-Y, Kao C-H. Increased risk of dementia in
patients exposed to nitrogen dioxide and carbon
monoxide: a population-based retrospective cohort
study. PLoS One. 2014;9(8):e103078. doi:10.1371/
journal.pone.0103078

63. Taylor DH Jr, Østbye T, Langa KM, Weir D,
Plassman BL. The accuracy of Medicare claims
as an epidemiological tool: the case of dementia
revisited. J Alzheimers Dis. 2009;17(4):807-815.
doi:10.3233/JAD-2009-1099

64. Power MC, Weisskopf MG, Alexeeff SE,
Coull BA, Spiro A III, Schwartz J. Traffic-related air
pollution and cognitive function in a cohort of older
men. Environ Health Perspect. 2011;119(5):682-687.
doi:10.1289/ehp.1002767

Particulate Air Pollution and Incident Dementia in the US Original Investigation Research

jamainternalmedicine.com (Reprinted) JAMA Internal Medicine Published online August 14, 2023 E9

© 2023 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by Jane Rogers on 08/26/2023

https://dx.doi.org/10.1289/EHP2966
https://dx.doi.org/10.1289/EHP2966
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2020.4471?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2020.4471?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
https://hrs.isr.umich.edu/publications/biblio/9042
https://hrs.isr.umich.edu/publications/biblio/9042
https://dx.doi.org/10.1111/rssa.12556
https://dx.doi.org/10.1289/ehp.1408125
https://dx.doi.org/10.1016/S0140-6736(20)30752-2
https://dx.doi.org/10.1016/S0140-6736(20)30752-2
https://dx.doi.org/10.1097/EDE.0000000000000945
https://dx.doi.org/10.1073/pnas.1804353115
https://dx.doi.org/10.1016/j.toxlet.2020.03.005
https://dx.doi.org/10.1016/j.toxlet.2020.03.005
https://dx.doi.org/10.1097/EDE.0b013e318230e861
https://dx.doi.org/10.1097/EDE.0b013e318230e861
https://dx.doi.org/10.3233/JAD-200765
https://dx.doi.org/10.3233/JAD-200765
https://dx.doi.org/10.1289/EHP9018
https://dx.doi.org/10.1038/s41467-021-27049-2
https://dx.doi.org/10.1136/bmj-2022-071620
https://dx.doi.org/10.1371/journal.pone.0198283
https://dx.doi.org/10.1371/journal.pone.0198283
https://dx.doi.org/10.1073/pnas.2211282119
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2019.4914?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaneurol.2019.4914?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300
https://dx.doi.org/10.1016/j.jenvman.2022.116285
https://dx.doi.org/10.1016/j.jes.2020.03.051
https://dx.doi.org/10.1016/j.atmosenv.2015.03.004
https://dx.doi.org/10.1016/j.atmosenv.2015.03.004
https://dx.doi.org/10.1016/j.arr.2021.101504
https://dx.doi.org/10.1029/2018GH000144
https://publichealthwatch.org/2021/09/28/as-california-burns-america-breathes-toxic-smoke/
https://publichealthwatch.org/2021/09/28/as-california-burns-america-breathes-toxic-smoke/
https://publichealthwatch.org/2021/09/28/as-california-burns-america-breathes-toxic-smoke/
https://dx.doi.org/10.1289/ehp.1409277
https://dx.doi.org/10.1289/ehp.1409277
https://dx.doi.org/10.1016/j.envres.2014.10.015
https://dx.doi.org/10.1016/j.envres.2014.10.015
https://dx.doi.org/10.1029/2021GH000578
https://dx.doi.org/10.1161/JAHA.117.007492
https://dx.doi.org/10.1016/S2542-5196(21)00200-X
https://dx.doi.org/10.1016/S2542-5196(21)00200-X
https://dx.doi.org/10.1016/j.joclim.2021.100110
https://dx.doi.org/10.1016/j.joclim.2021.100110
https://dx.doi.org/10.1101/2023.01.31.23285059
https://dx.doi.org/10.1289/EHP10498
https://dx.doi.org/10.1016/j.amepre.2017.10.021
https://dx.doi.org/10.1016/j.amepre.2017.10.021
https://dx.doi.org/10.3389/fnins.2019.01232
https://dx.doi.org/10.1016/j.neuro.2015.11.008
https://dx.doi.org/10.3233/JAD-200813
https://dx.doi.org/10.1016/j.envres.2009.06.001
https://dx.doi.org/10.1097/EE9.0000000000000022
https://dx.doi.org/10.1097/EE9.0000000000000022
https://dx.doi.org/10.1371/journal.pone.0103078
https://dx.doi.org/10.1371/journal.pone.0103078
https://dx.doi.org/10.3233/JAD-2009-1099
https://dx.doi.org/10.1289/ehp.1002767
http://www.jamainternalmedicine.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamainternmed.2023.3300

