Innovative approaches in diagnosing and cleansing of environmental toxicity

by Dr. Ralf Oettmeier, MD, Head Physician Alpstein Clinic Gais, Switzerland (www.alpstein-clinic.com)

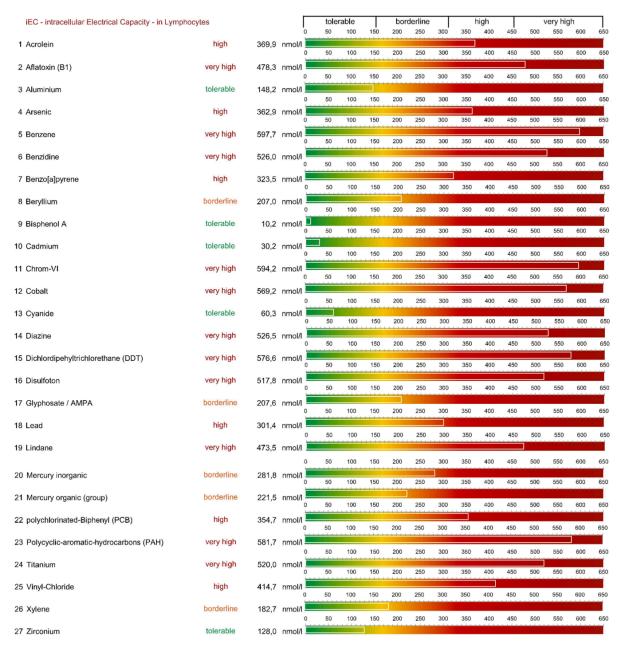
The amount of potentially toxic (poisonous) substances has increased dramatically!

We have known for a long time how significant environmental toxins are as disease-causing factors. Since 1950, about 450,000 (Source: KMT Continuing Education Course - Presentation) new chemical substances have entered the environment and their significance for our health, respectively triggering all possible chronic disease and cancer is still in its infancy. Nevertheless, research can now clearly name many substances with regard to their toxicological profile (poisoning). The American platform "ATSDR" provides extensive information on toxins (poisons) in correlation with diseases and publishes every 2 years a ranking of the most toxic substances.

THE ATSDR 2019 SUBSTANCE PRIORITY LIST

2019 Rank	Substance Name	Total Points	CAS RN
1	Arsenic	1676	7440-38-2
2	Lead	1531	7439-92-1
3	Mercury	1458	7439-97-6
4	Vinyl Chloride	1356	75-01-4
5	Polychlorinated Biphenyls	1345	136-36-3
6	Benzene	1327	71-43-2
7	Cadmium	1318	7440-43-9
8	Benzo(a)pyrene	1307	50-32-8
9	Polycyclic Aromatic Hydrocarbons	1278	130498-29-2
10	Benzo(b)fluoranthene	1253	205-99-2

 ${\it Figure: Extract from the ATSDR priority list.}$


© atsdr.cdc.gov

Pollutant analysis at the Alpstein Clinic

Despite a variety of efforts by holistic physicians, the acceptance in the medical profession of toxins in the body as a major cause of disease has so far fallen short of expectations. The insufficient scientific acceptance of hair mineral analysis, SO-Check hand scan (Oligoscan®) or chelate mobilization test is also responsible for this. However, thanks to intensive research in the field of analytics, it has now been possible to determine the content of toxic substances

of all kinds in lymphocytes with a precision of 98 (!) percent. This is an "intracellular, electrical capacitive measurement". Until now, this was only common in wet chemistry. However, microchip technology has created considerable potential in fluid measurement, so that the system of measuring fluid substances, taking into account the metal-binding proteins, can also be applied to all kinds of other chemical substances (proteins, metals, organic substances) could be transferred (1-4).

The following example shows a measurement result of the "Top 27 Environmental Toxins" from the area of heavy metals and organic environmental toxins. It should be noted here that the concentration of the pollutants is in the range "nmol/l", which corresponds exactly to the concentration ranges of hormones and messenger substances in the nervous system.

iEC toxin analysis from a 56-y. old women suffering from metastatic colonic cancer

Ideally, the measured values should be below 10 nmol/l, which is rather rare. Frequently, the toxins are found in the borderline range (= borderline), which in total can also attain medical

significance. The laboratory cooperating with us offers a range of about 900 contaminants from 21 substance classes.

Adhesives (13)	Antibiotics	Bactericidal	Chemicals
	(48)	(12)	(88)
Chemotherapeutics (46)	Dyes	Detergent	Food toxins
	(64)	(34)	(71)
Fungal toxins	Heavy metals	Herbicides	Insecticides (49)
(38)	(54)	(37)	
Medication	Microplastics	Pesticides	Plasticizer (softener)
(103)	(47)	(40)	(45)
Radioactive substances (16)	Silicones (27)	Dental materials (51)	Vaccination supplements (42)
Volatile organic compounds (7)			

Table: Analysis profile of lymphocyte enrichments (number of substances in parentheses)

© Alpstein Clinic

Based on the mentioned ATSDR ranking list, we offer analysis of the most important 27 (Basic) and 53 (Advanced) at the Alpstein Clinic.

One of our patients with chronic weakness, skin eczema, recurrent infections, depression, and hormonal imbalances has approximately 300 pollutants in her lymphocyte measurements. What surprised us was that it showed only 1 percent with normal values, whereas more than 50 percent showed borderline or elevated levels of toxins.

Test Module	Very High >500	High >300	Borderline >100	Tolerable <100	Normal < 10
54 Metals	0	15	19	20	0
37 Herbicides	0	8	17	12	0
49 Insecticides	0	13	19	16	1
20 Microplastics	0	7	9	4	0
40 Pesticides	0	8	14	17	1
44 Microplastics	0	8	18	17	1
23 Dental materials	0	8	6	9	0
TOTAL 267	0	67 (25%)	102 (38%)	95 (36%)	3 (1%)

Table: Distribution of pollutant analysis in a patient, © Alpstein Clinic

The following example demonstrates the opportunity to measure also dental materials. The 45-years old patients was suffering from chronic fatigue since many years. Due to early carious defects he got not Amalgam but a lot of plastic fillings and some ceramic crowns.

iEC - intracellular Electrical Capacity - in Lymphod	cytes		1	24 Ethyl acrylate	tolerable	92,8	nmol/l
1 1,4-Cyclohexanedimethanol-residue	borderline	264,0	nmol/l	25 Ethylene glycol	tolerable	112,7	nmol/l
2 2-Chloroethyl vinyl ether	high	384,3	nmol/l	26 Glycerol-1,2-diacetate	borderline	228,5	nmol/l
3 2-Ethylhexyl acrylate	tolerable	77.7	nmol/l	27 Glycidyl methacrylate	borderline	167,7	nmol/l
	high			28 Hexamethylene-diol	borderline	245,9	nmol/l
4 2,3-Epoxymethacrylacid			nmol/l	29 Hybrid composite	high	327,1	nmol/l
5 2,2,4,4-Tetramethyl-1,3-cyclobutanediol- residues (CBDO)	tolerable	122,4	nmol/l	30 Hydrogenated methylene diphenyl diisocyanate	borderline	150,9	nmol/l
6 4,4'-Methylenebis(cyclohexylamine)	high	316,4	nmol/l	31 Hydroquinone	tolerable	86,2	nmol/l
7 Aliphatic-diacid-moieties	tolerable	17,3	nmol/l	32 Hydroxyethyl-Methacrylate	high	378,9	nmol/l
8 Barium-Aluminium-Glass	high	331,2	nmol/l	33 Hydroxyl (groups)	tolerable	87,6	nmol/l
9 Benzophenone	high	323,9	nmol/l	34 Methyl-Acrylate	borderline	286,7	nmol/l
10 Benzylbutyl phthalate (BBP)	borderline	176,6	nmol/l	35 Nano hybrid composite	tolerable	33,4	nmol/l
11 Bisphenol-A (BPA)	borderline	236,9	nmol/I	36 Peroxide	tolerable	28,7	nmol/l
12 Bisphenol glycidyl methacrylate	borderline	214,0	nmol/l	37 Polyamide (PA)	high	360,5	nmol/l
13 Bisphenol-S (BPS)	high	338,9	nmol/l	38 Polycarbonate	borderline	210,5	nmol/l
14 Butyl Acrylate	high	362.7	nmol/l	39 Polyester-polycabonate blend	borderline	279,4	nmol/l
15 Butyl Methacrylate	borderline		nmol/l	40 Polyethylene terephthalate (PET)	tolerable	64,0	nmol/l
,	tolerable			41 Polyethylene terephthalate glycol (PET-G)	borderline	171,4	nmol/l
16 Campherchinon			nmol/l	42 Polyolefin	borderline	261,6	nmol/l
17 Cellulose acetate butyrate (CAB)	high	308,3	nmol/l	43 Polyurethane (PU)	high	322,4	nmol/l
18 Cyclohexanedimethanol (CHDM)	borderline	297,9	nmol/l	44 Silicates	borderline	222,4	nmol/l
19 Di-2-ethylhexyl phthalate (DEHP)	tolerable	123,8	nmol/l	45 Silicon dioxide	borderline	245,4	nmol/l
20 Dibutyl phthalate (DBP)	tolerable	121,9	nmol/l	46 Terephthalic acid (TPA)	high	363,9	nmol/l
				47 Toluidin	tolerable	41,3	nmol/l
21 Dicarboyxl acid	borderline	289,7	nmol/l	48 Triacetin (glycerin triacetat)	borderline	203,8	nmol/l
22 Diethyl phthalate (DEP)	tolerable	123.8	nmol/l	49 Triethylenglycoldimethacrylate	high	321,4	nmol/l
== 5.50.3. kumana (ser)		120,0		50 Trimethylolpropane triacrylate	high	356,3	nmol/l
23 Diphenyl-diisocyanate-residues	tolerable	74,3	nmol/l	51 Urethane dimethacrylate	borderline	188,5	nmol/l

Example of eIC analysis in lymphocytes regarding common dental materials (Top 51 of Alpstein Clinic)

In many cases, in addition to occupational and private exposure to sources of toxins, such high levels of pollutants are also due to genetic or epigenetic weaknesses of the excretory enzymes. This can also be analyzed very well in the meantime.

TOTAL ENZYMA	ATIC ACTIVITY:	REDUCED		
Gene	Variant	Genotype	Expected enzymatic activity	Estimated remaining enzymatic activity (%)
CYP2E1	Dral SNP / rs72559710	homozygous wild type	normal	PHASE I
CYP2E1	Pstl SNP / rs3813867	homozygous wild type	normal	100%
EPHX1	Tyr113His	heterozygous mutation	decreases	PHASE II
EPHX1	His139Arg	heterozygous mutation	decreases	31,25 %
GSTM1	Present / Absent	absent	zero	
GSTT1	Present / Absent	present	decreases	
GSTP1	lle105Val	homozygous mutation	strongly decreased	
GSTP1	Ala114Val	homozygous mutation	strongly decreased	
SOD2	Val16Ala	homozygous mutation	strongly decreased	
СОМТ	Val158Met	homozygous wild type	normal	
Analysis	Average length (base pai	rs)	Interpretation	
Telomere length	6323		excellent	

Example of a decrease in the activity of detoxification enzymes phase 2 (mitochondria), @ Alpstein Clinic

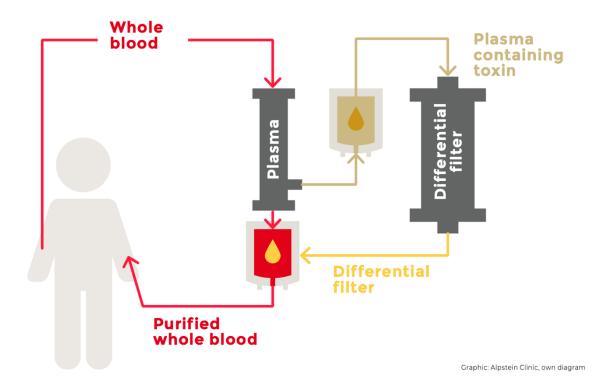
Targeted reduction of pollutant loads

Of course, the best diagnostics are of little use if effective, adequate therapies are not also available.

In this area the concept of the Alpstein Clinic has very extensive possibilities:

- Targeted prevention of exposure to pollutants through meaningful information material.
- General stimulation of elimination and detoxification (drink more, stimulation of organs through natural remedies, algae, zeolite and antioxidants).
- Stimulating bowel elimination through colon hydrotherapy (form of colonic irrigation), coffee enemas, liver cleansing and therapeutic fasting.
- Detoxification infusions with chelates and biological substances.
- INUSpherese® as probably the most efficient method of separating harmful substances from the blood (see also on our homepage at:

 <u>www.alpstein-clinic.ch/therapiekonzept/inuspherese/</u>)


INUSpherese[®]: Highly innovative Blood plasma purification to strengthen the immune defense and self-healing

The original Chemopherese $^{\circledR}$ concept particularly revolved around eliminating toxins, i.e. chemicals such as pesticides and organic solvents, as well as heavy me- tals.

INUSpherese[®] then enhanced this by also removing pathological proteins and immune complexes, metabolic waste, infection toxins, allergens, and inflammatory messengers. **Blood-plasma purification**, also known as plasmapheresis (from the Greek apherein = to separate), helps the body eliminate harmful proteins and metabolic products (e.g. cholesterol, etc.) or other toxic loads (paraproteins, circulating immune complexes, complex infection toxins, pathoproteins, haptens) and restore dysregulated metabolisms and inflammatory cascades/ the immune system to their natural equilibrium (metabolic/immunomodulation), re-activating the body's self-healing powers.

Blood is taken and restored via the arm veins using special cannulas. Treatment takes approx. two hours, and is performed by the Alpstein Clinic's specially trained and qualified medical staff and assistants. There are three different types of filters, whose efficacy has been proven in clinical studies. The process is considered very effective with a high degree of tolerance

The principle of the INUSpheresis® is shown in the next figure.

The success proves us right

Of course, it is also possible to measure the efficiency of the INUSpheresis® system by measurement the content of filtrated out toxins into the filter product eluate using the same panel of IGL laboratory. The following figure is demonstrating one example.

before INUSpheresis® (blood)

after INUSpheresis® (eluate)

1 Acrolein	borderline	190,6	nmol/l	1 Acrolein	very high	545,2	nmol/l
2 Aflatoxin (B1)	borderline	179,2	nmol/I	2 Aflatoxin (B1)	very high	533,1	nmol/I
3 Aluminium	tolerable	138,5	nmol/l	3 Aluminium	borderline	299,2	nmol/l
4 Arsenic	tolerable	57,8	nmol/l	4 Arsenic	high	442,8	nmol/l
5 Benzene	very high	501,9	nmol/l	5 Benzene	borderline	185,6	nmol/l
6 Benzidine	high	327,1	nmol/I	6 Benzidine	tolerable	149,5	nmol/l
7 Benzo[a]pyrene	borderline	180,8	nmol/l	7 Benzo[a]pyrene	high	392,3	nmol/l
8 Beryllium	tolerable	142,2	nmol/l	8 Beryllium	borderline	215,5	nmol/l
9 Bisphenol A	tolerable	50,2	nmol/l	9 Bisphenol A	very high	470,0	nmol/I
10 Cadmium	very high	521,7	nmol/l	10 Cadmium	high	398,6	nmol/I
11 Chromium-VI	tolerable	136,4	nmol/I	11 Chromium-VI	high	417,7	nmol/I
12 Cobalt	high	329,1	nmol/I	12 Cobalt	borderline	258,4	nmol/I
13 Cyanide	borderline	255,0	nmol/l	13 Cyanide	high	401,4	nmol/l
14 Diazine	borderline	258,2	nmol/l	14 Diazine	high	426,7	nmol/I
15 Dichlordipehyltrichlorethane (DDT)	tolerable	39,5	nmol/l	15 Dichlordipehyltrichlorethane (DDT)	borderline	274,8	nmol/l
16 Disulfoton	tolerable	72,3	nmol/l	16 Disulfoton	borderline	179,0	nmol/l
17 Glyphosate / AMPA	tolerable	57,7	nmol/l	17 Glyphosate / AMPA	tolerable	66,0	nmol/l
18 Lead	tolerable	48,9	nmol/l	18 Lead	borderline	277,0	nmol/l
19 Lindane	very high	586,1	nmol/l	19 Lindane	borderline	186,1	nmol/l
20 Mercury inorganic	borderline	175,4	nmol/l	20 Mercury inorganic	tolerable	102,3	nmol/l
21 Mercury organic (group)	borderline	168,4	nmol/l	21 Mercury organic (group)	high	400,7	nmol/l
22 Polychlorinated-Biphenyl (PCB)	very high	469,6	nmol/I	22 Polychlorinated-Biphenyl (PCB)	tolerable	117,9	nmol/l
23 Polycyclic-aromatic-hydrocarbons (PAH)	very high	588,7	nmol/l	23 Polycyclic-aromatic-hydrocarbons (PAH)	high	362,9	nmol/l
24 Titanium	tolerable	24,6	nmol/I	24 Titanium	borderline	199,8	nmol/l
25 Vinyl-Chloride	very high	545,4	nmol/l	25 Vinyl-Chloride	tolerable	24,0	nmol/I
26 Xylene	tolerable	50,8	nmol/I	26 Xylene	very high	555,1	nmol/l
27 Zirconium	tolerable	122,2	nmol/I	27 Zirconium	very high	545,7	nmol/l

Comparison between iEC analysis before INUSpheresis® (left) and the concentration into the filter product (right)

Finally, we started to test the toxin level follow up some weeks after the cleansing method INUSpheresis®. Within the next six months the data base assessment of over 50 patients should be finished and will be published.

The last figure gives an example of one patient (62-years old) suffering from a severe chronic fatigue and neuropathy since a long time. He has tried a lot of conventional and also integrative and alternative methods to find improvement. He got also many chelation treatments and is using a big amount of supplements. But nothing has helped. The INUSpheresis after targeted toxin analysis using the new laboratory has brought the breakthrough. Step by step he is feeling better and more energized. Beside a lot of "Top 27" toxins we found especially radioactive load from Uran 235. After two INUSpheresis® the general toxic load was diminished from 8108 nmol/l to 4052 nmol/l. The reduction due to the cleansing was 50.1 percent! And we were delighted that also Uran 235 was significantly diminished.

before INUSpheresis® (blood)

after INUSpheresis® (blood)

belove interpriere	.5.5	004,		arter intoophicresis	(3.00
iEC - intracellular Electrical Capacity - in Lympl	hocytes			iEC - intracellular Electrical Capacity - in Lymphocyte	es
1 Acrolein	very high	535,4	nmol/l	1 Acrolein	tolerable 1
2 Benzene	high	366,8	nmol/l	2 Aflatoxin (B1)	borderline 2
3 Benzo[a]pyrene	high	376,7	nmol/l	3 Aluminium	tolerable
4 Cyanide	borderline	275,8	nmol/l	4 Arsenic	borderline 1
5 Polycyclic-aromatic-hydrocarbons(PAH)	tolerable	86,6	nmol/l	5 Benzene	borderline 2
6 Xylene	high	448,6	nmol/l	6 Benzidine	borderline 1
7 Benzidine	high	423,3	nmol/l	7 Benzo[a]pyrene	tolerable
8 Diazine	tolerable	50,7	nmol/l	8 Beryllium	tolerable 1
9 Alumimium	tolerable	72,5	nmol/l	9 Bisphenol A	tolerable
10 Arsenic	borderline	177,1	nmol/l 1	0 Cadmium	tolerable
11 Beryllium	borderline	261,5	nmol/l 1	1 Chromium-VI	borderline 1
12 Cadmium	very high	514,0	nmol/l 1	2 Cobalt	borderline 1
13 Chrom-VI	borderline	238,3	nmol/l 1	3 Cyanide	borderline 1
14 Cobalt	borderline	187,4	nmol/l 1	4 Diazine	borderline 2
15 Lead	borderline	242,7	nmol/l 1	5 Dichlordipehyltrichlorethane (DDT)	tolerable
16 Mercury-inorganic	high	350,7	nmol/l 1	6 Disulfoton	tolerable
17 Mercury-organic (group)	borderline	194,2	nmol/l 1	7 Glyphosate / AMPA	tolerable
18 Titanium	tolerable	23,3	nmol/l 1	8 Lead	borderline 2
19 Zirconium	borderline	260,4	nmol/l 1	9 Lindane	tolerable
20 Glyphosat / AMPA	very high	586,4 1	nmol/l 2	0 Mercury inorganic	tolerable
21 Disulfoton	very high	473,7	nmol/l 2	1 Mercury organic (group)	tolerable
22 Dichlordipehyltrichlorethane (DDT)	tolerable	124,6	nmol/I 2	2 Polychlorinated-Biphenyl (PCB)	borderline 17
23 Lindane	borderline	201,7	nmol/l 2	3 Polycyclic-aromatic-hydrocarbons (PAH)	borderline 24
24 polychlorinated-Biphenyl (PCB)	borderline	217,9 1	nmol/l	4 Titanium	tolerable 1
25 Bisphenol A	very high	533,6	nmol/l 2	5 Vinyl-Chloride	borderline 23
26 Vinyl-chloride	high	361,5 1	nmol/l 2	6 Xylene	tolerable 10
27 Aflatoxine	tolerable	104,7	nmol/l 2	7 Zirconium	borderline 23

iEC toxin analysis before and 6 weeks after two sessions of INUSpheresis®

very high

Perspective view

3 Uran-235

The decribed method of environmental toxin analysis using lymphocytes means an innovative analysis with a high-grade accuracy. This will increase the acceptance of our findings a lot and is recommended to become a basic standard in bioregulatory, integrative and causative working centers.

28 Uran-235

borderline 271,8 nmol/l

Contact data of the laboratory:

IGL Labor GmbH - Institut für ganzheitliche Labordiagnostik
Dorfstraße 15
25872 Wittbek

Germany

Phone: +49 (0)48 45 - 79 16 40 E-Mail: info@igl-labor.de

Webpage: https://www.igl-labor.de

Literature and Links

- (1) https://www.mdpi.com/1424-8220/21/6/1929
- (2) https://pubs.rsc.org/en/content/articlelanding/2021/TC/D0TC05719C
- (3) https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/syst.202000063
- (4) https://hal.archives-ouvertes.fr/hal-03184552